Syllabus and Curriculum of Diploma in Radiotherapy Technology (DRTT) course

(To be implemented From 2015 - 16 session)

Uttar Pradesh State Medical Faculty, Lucknow.

Index

•	Objectives of the course	3-3
•	Outline of curriculum of 'Diploma in Radiotherapy Technology (DRTT)' course	4-7
•	Eligibility criteria & duration of the course	8-8
•	Scheme of examination	9-10
•	Schedule of the course	11-13
•	Details of first year course curriculum	14-23
•	Details of Second year course curriculum	24-32

OBJECTIVES OF THE COURSE

To prepare a Radiotherapy Technology (DRTT) who -

Outline of Curriculum of Diploma in Radiotherapy Technology (DRTT) course

FIRST YEAR

THEORY (Classes: 9 AM to 12 Noon)

First paper : Syllabus covers -

1. Fundamentals of Anatomy and Physiology and pathology.

Second paper : Syllabus covers -

- 1. Principles of Radiation Therapy, Radiation Units and Measurements.
- 2. Hand hygiene & prevention of cross infection.
- 3. Basics life support (BLS) & Cardio-pulmonary resuscitation (CPR).

PRACTICAL (Classes: 1 PM to 4 PM)

Practical classes will be after lunch; from 1 PM to 4 PM.

Students must present in the hospital/ Lab for practicals.

Following subjects must be taught; though there will not be any exam from these-

- 1. Basic Computer skills.
- 2. Basic English.
- 2. Soft skills like Interpersonal relationship skills & moral education.

Outline of Curriculum of Diploma in Radiotherapy Technology (DRTT) course

SECOND YEAR

THEORY (claases:9 AM to 12 Noon)

First paper : Syllabus covers

1. Modern Imaging and Conventional & advanced Radiotherapy Planning Techniques.

Second paper : Syllabus covers

1. Radiation Biology, Radiation Safety and Information Technology

SECOND YEAR

PRACTICAL (claases:9 AM to 12 Noon)

Practical exams syllabus should cover-

COURSE DURATION:-

• It is 2 years, full time Diploma Course.

ELIGIBITY:-

• Candidate must have passed 12th with Physics, Chemistry, Biology

Or

Physics, Chemistry, Maths

with 35% marks in Intermediate exams.

(From UP board or any other recognised board).

• Candidate must have completed age of 17 years of age as on 31st December of admission year. There is no maximum age limit for the admission.

SCHEDULE OF EXAMINATION

FIRST YEAR

<u>Paper</u>	<u>Subjects</u>	<u>Mark</u>	<u>Internal</u> <u>Assessme</u> <u>nt Marks</u>	<u>Total</u> <u>Marks</u>	<u>Pass</u> <u>Marks</u>	<u>Duration</u> of Exam.
<u>First</u> <u>Paper</u> <u>Theory</u>	 Fundamentals of Anatomy and Physiology and pathology. 	75	25	100	50	3 Hours
<u>Second</u> <u>Paper</u> <u>Theory</u>	 Principles of Radiation Therapy, Radiation Units and Measurements. Hand hygiene & prevention of cross infection. Basics life support (BLS) & Cardio-pulmonary resuscitation (CPR). 	75	25	100	50	3 Hours
<u>Practical</u>	Oral & Practical	75	25	100	50	3 Hours

SCHEDULE OF EXAMINATION

SECOND YEAR

<u>Paper</u>	<u>Subjects</u>	<u>Mark</u>	<u>Internal</u> <u>Assessme</u> nt Marks	<u>Total</u> <u>Marks</u>	<u>Pass</u> <u>Marks</u>	<u>Duration</u> of Exam.
<u>First</u> <u>Paper</u> <u>Theory</u>	 Modern Imaging and Conventional & advanced Radiotherapy Planning Techniques. 	75	25	100	50	3 Hours
<u>Second</u> <u>Paper</u> <u>Theory</u>	1. Radiation Biology, Radiation Safety and Information Technology	75	25	100	50	3 Hours
<u>Practical</u>	Oral & Practical	75	25	100	50	3 Hours

(List of holidays, Total hours, Subject wise allottement of hours)

• List of Holidays:-

Sundays	- 52 days
Summer vacation	- 10 days
Winter vacation	- 10 days
Gazetted holidays	- 23 days
Preparatory holidays	- 10 days
Total Holidays	- 105 days

• Total Hours :-

Theory classes per day	- 3 Hours
Practical classes per day	- 3 Hours
Total hours per day	- 6 Hours
Total days & hours in One year (after deduction of holidays)	- 260 days or - 1560 Hours

SCHEDULE OF COURSE

Subject wise allottement of hours

FIRST YEAR

Theory (780 Hours) Practical (780 Hours)

<u>First</u> <u>Paper</u> Theory	1. Fundamentals of Anatomy and Physiology and pathology.	
	1. Principles of Radiation Therapy, Radiation Units and Measurements.	
<u>Second</u> <u>Paper</u>	2. Hand hygiene & prevention of cross infection.	
<u>Theory</u>	3. Basics life support (BLS) & Cardio-pulmonary resuscitation (CPR).	
<u>Third</u> <u>Paper</u> <u>Practical</u>	As described in curriculum	780 Hrs
<u>Theory:</u> Other	1.Basic Computer skills.	30 Hrs
Subjects (These subjects must	2. Basic English.	30 Hrs
though there will not be any exam from these)	3.Soft skills like - Interpersonal relationship skills & moral education	10 Hrs

SCHEDULE OF COURSE

Subject wise allottement of hours

SECOND YEAR

Theory (780 Hours) Practical (780 Hours)

<u>First</u> <u>Paper</u> <u>Theory</u>	 Modern Imaging and Conventional & advanced Radiotherapy Planning Techniques. 	
<u>Second</u> <u>Paper</u> <u>Theory</u>	1. Radiation Biology, Radiation Safety and Information Technology	
<u>Third</u> <u>Paper</u> <u>Practical</u>	As described in curriculum	780 Hrs

PAPER 1st Theory	Topics	Hours.
Theory	1.Introduction to Anatomy as a whole, Skeleton-bones & joints, formation of bones, structure of bones, classification of bones according to shape, Developmental classification, Regional classification, structural classification & growth of skeleton. Centre of ossification, type of bone, type of joints. Gross structure of human long bone, parts of young bone. Medico-legal & anthropological aspects of skeletal system, Estimation of age, sex, stature (height) and race. Classification & characters of joints, structural, functional & regional. Applied anatomy of joints, dislocation of joints. embryology, cell division, fertilization, development of embryo, gamete formation, menstrual cycle, formation of germ layers, development of embryonic disc, Placenta, formation of tissues, organs &systems of human body, congenital malformations.	
1.Fundamentals of Anatomy and Physiology and pathology.	2.Fundamentals of The Respiratory System: Heart and blood vessels (Circulatory system)	
	3.Heart: Position, structure and functions.	
	4.The lymphatic system.	
	5.The Urinary System.	
	6.The reproductive system.	
	7.The Endocrine system.	
	8.The Nervous system.	

PAPER 2nd		Hours.
Theory	Topics	
	Section A:-	
	1.SI Units, Force, mass, momentum, work, energy, power,	
	density, pressure, heat, sound, wave and oscillations. Atomic	
	structure: Atom, nucleus, nuclear energy levels, particle	
	radiations, electromagnetic radiations, Radiation Units:	
	Activity, Becquerel (Bq), exposure, roentgen, absorbed dose,	
	rad, Gray, dose-equivalent, rem, Sievert, KERMA. Relation	
	between absorbed dose, exposure and KERMA.	
1.Principles of	Interaction of Radiation with Matter	
Radiation	Photoelectric effect, Compton Effect, Pair production,	
Radiation	Ionisation of matter, Energy absorbed from X-rays, X-rays	
Units and	Scattering, X-rays transmission through the medium, linear	
Measurements.	and mass attenuation coefficient, HVT and TVT, Interaction	
	of charged particle and neutrons with matterCalculation of	
	absorbed dose from exposure, Absorbed dose to air,	
	Absorbed dose to any medium, Exposure from radioactive	
	sources, exposure rate constant. HVL and attenuations	
	2.Dose distribution and scattering in medium: Properties of	
	phantom materials and various types of phantoms, depth dose	
	distribution, dose build-up, percentage depth dose and its	
	influencing factors. Back scatter factor, tissue-air-ratio and influencing factors. Relation between TAR and PDD. Scatter-	
	air-ratio. Dose calculation of irregular fields using Clarkson's	
	method	
	3. Dosimetric calculations: Dose calculation parameters,	
	collimator scatter factor (Sc), phantom scatter factor (Sp),	
	Tissue phantom ratio (TPR), tissue maximum ratio (TMR),	
	and their influencing factors. Relationship between TMR and	
	PDD. Scatter maximum ratio (SMR). Dose calculations for	
	linear accelerator and Co-60 unit using Sc, Sp factors for	
	SSD and SAD methods, irregular fields, asymmetric fields	
	etc.	

PAPER 2nd		Hours.
Theory	Topics	
	4.Isodose distribution of phantom beam: Isodose charts,	
	measurement of isodose curves, parameters of isodose	
	curves: beam quality, source size, SSD and SDD – penumbra	
	effect, collimation and flattening filter, field size, Wedge	
	filters: wedge angle, wedge transmission factor, wedge	
	systems, effect of beam quality, design of wedge filters,	
	Bolus, tissue compensators, shielding blocks.	
1.Principles of	5.Basics of Electron beam therapy Principles of Calibration	
Kadiation Therapy	of Cobalt Unit, mHDR and Linac	
Radiation		
Units and	Section B:-	
Measurements.		
	1. Basics of radiography of Chest & Thorax Bones, Abdomen,	
	Upper limb, Lower limb:, Vertebral Column, Hips & Pelvis:-	
	Ward mobile radiography, Basics of mammography, Bone	
	Densitometer, CT scan and MRI	
	Dark Room Procedures : manual and auto processors.	
	• Dark Room: Layout and planning.	
	• Type of entry, door design. Dark room illuminations - white	
	light and safe lighting	
	2.Basics of nuclear medicine : Fundamentals of Nuclear	
	medicine, Isotones used and their characteristics. Thyroid	
	Uptake counter, gamma camera, SPECT-CT and PET CT,	
	Radionuclide therapy	

PAPER 2nd		Hours.
Theory	Topics	
	Section C:-	
	1.Principles and working of x-ray tube. Measuring	
	instruments voltage or KV meters. Measurement of tube	
	current Principles of thermionic emission and rectification in	
	x-ray technology. High voltage circuits in x-ray Units.	
	Electrical hazards and safety. Tube rating in imaging and	
	therapy x-ray tube and thermal safety. Intensity of radiation	
	and its variation with distance,KV,MA. Introduction to	
1.Principles of	electro-magnetic spectrum, definition of wave length and its	
Radiation	quantum relationship with peak kilovoltage.	
Radiation	Physical principles of radiation. Radioactivity and ionizing	
Units and	radiations used in treatment of malignancy, sources and	
Measurements.	techniques. Tissue tolerance, tumour lethal dose, therapeutic	
	ratio and radiosensitivity.	
	Units of exposure and radiation, prescription of radiation	
	treatment. Definitions and basics of teletherapy techniques.	
	Orthovoltage and megavoltage machines. Teletherapy	
	machines – cobalt and linear accelerator. Basic principles and	
	clinical applications of beam direction and modification	
	devices. Clinical application of mould room techniques	
	2.Brachytherapy:	
	Definition and basic principles. Radium and its substitutes	
	used. Surface Moulds.	
	Interstitial implantation. Intracavitary and intraluminal	
	brachytherapy.	

(17)

PAPER 2nd Theory	Topics	Hours.
3.Hand hygiene &	1. Hand hygiene & method of Hand washing.	15 Hrs
prevention of cross infection.	2. Prevention of cross infection.	15 Hrs

PAPER 2nd	Topics	Hours.
Theory		
	1. Code blue.	05 Hrs
4.Basic life		
support (BLS)		
& Cardio-		
pulmonary resuscitation	2. Details of basic life support (BLS) & Cardio-pulmonary resuscitation (CPR).	35 Hrs
(CPR).		

Curriculum for Practical :- First Year Diploma in Radiotherapy Technology (DRTT)

Practical	Topics

PAPER 1st	Topics	Hours.
I heory	Section A.	
	1.Physics of Diagnostic Radiology:-	
	Familiarisation with various X-ray diagnostic tools, Radiological	
	image formation, Use of	
	contrast media, Films, Characteristic of X-ray films, Film	
	Processing, Optical Density	
	Measurements, Different types of Screens, Use of fluorescent	
	screens in radiology, Effect of	
1.Modern	screen in reduction of patient dose, Various types of grids	
Imaging and	Doppler different types of transducers applications & role in	
& advanced	medicine & cross sectional anatomy.	
Radiotherapy	2 CT geon conventional grivel (halical) Multiglies + Historical	
Planning Techniques	3.C1 scan, conventional, spiral (nencal), Mutushce Instoncal	
i cennques.	development, its principle and applications, various generations&	
	definition of terms and cross sectional anatomy& use of diagnostic	
	methods.	
	4.Magnetic Resonance Imaging (MRI)-: Principle, application, its	
	advantage over computed tomography or ultrasonography.	
	Spectroscopy-: Principle, application and uses.	
	5.Computerized Radiography-: Principle, application, advantage	
	& technique.	
	6.Digital Radiography-: Principle, scanned projection	
	radiography, digital subtraction angiography application, definition,	
	advantages & techniques.	
	7.Picture Archiving Communication System (PACS)-: Basic	
	knowledge of PACS, application, principle & image transmission.	
	8. Mammography-: Principle, application, advantage in soft tissue	
	radiography, physics, filtration, QA & QC	

PAPER 1st	Topics	Hours.
1 Modern	Section A:-	
Imaging and	9.Positron Emission Tomography (PET) :Basic priciple, clinical	
Conventional	application & advantages.	
Radiotherapy	10.Different types of cameras e.g. laser, photography etc-:	
Planning Techniques.	principle, processing & applications.	
_	11 De Baltante de Drivin la conference De dilinera estaremente	
	11. Kadio isotopes-: Principles of Scanner, Rectilinear scanner,	
	gamma camera.	
	12.QA in Diagnostic Radiology	
	Verification of Optical and Radiation field congruence, Beam	
	alignment, Focal spot size,	
	Linearity of tube current mA and Timer, applied potential, HVT	
	and total tube filter, Contact	
	between film and intensifying screen, Contrast resolution, Grid	
	alignment, Special techniques	
	like mammography, CT and Digital Radiography.	
	Section B:-	
	1. Isodose curves, isodose charts,. Influency parameters of isodose	
	curves: beam quality source size, SSD, SDD, penumbra,	
	collimation & flattening filter, field size. Wedge filters: wedge	
	angle, wedge factor, wedge systems, effect of beam quality, design	
	of wedge filters. Combination of various radiation fields: Wedge	
	field techniques. Definitions of following terms according to	
	ICRU-50/62. Gross tumour volume (GTV), clinical target volume	
	(CTV), planning target volume, irradiated volume cold and hot	
	spots.	

PAPER 1st Theory	Topics	Hours.
<u> </u>	Section B:-	
	2. Acquisition of patient data: body contours, internal structures	
	using radiographs, CT, MRI, US etc.; for 2-D & 3-D treatment	
	planning. Treatment simulation using conventional simulator,	
1 Modern	Simulator CT, CT simulator and virtual simulator. Treatment	
Imaging and	verification using port films, electronic portal imaging devices.	
Conventional	Corrections for surface irregularities; effective SSD method,	
& advanced Radiotherapy	TAR/TMR method, isodose shift method. Corrections for internal	
Planning	tissue in homogeneities: for beam attenuation and scattering using	
Techniques.	TAR method, power law TAR method, equivalent TAR method,	
	isodose shift method, typical correction factor. Absorbed dose	
	within inhomogeneity: bone, bone tissue interface, tissue	
	surrounding bone, lung tissue, and air cavity. Tissue compensator,	
	bolus, patient positioning	
	3 .Shielding blocks: block thickness, block divergence. Field	
	shaping : custom blocking, independent jaws, multileaf collimators,	
	skin dose; electron contamination of photon beams, dose	
	distribution in build-up region, skin sparing effect, effect of	
	absorber skin distance effect of field size, electron filters, skin	
	sparing at oblique incidence. Separation of adjacent fields:	
	orthogonal field junction, cranio-spinal fields, guidelines for field	
	matching	
	4 Parallel opposed, small beam directed therapy and wedge fields	
	in head and neck cancers. Treatment techniques in the treatment of	
	brain pituitary oral cavity laryny hypo/oropharyny maxillary	
	antrum nasonharvny, thyroid tonsil lin etc	
	5 Treatment techniques in Caroineme breast esenbasus bladder	
	5. Treatment techniques in Carcinoma breast, esophagus, bladder,	
	Gynecological cancers.	

PAPER 1st	Topics	Hours.
Theory		
	Section B:- 6 Treatment techniques in medulloblastoma Ca Lung bone	
	lymphome with special emphasis on mentle field irradiation Py	
	tashaisusa in Calanastata, ankthalmia tumaun. Hami hadu uthala	
	techniques in Ca. prostate, opninamic tumours. Henn body, whole	
	body, irradiation techniques using photons and electrons.	
	7.Basic terminology of brachytherapy, brachytherapy sources,	
	properties of idea brachytherapy sources, construction of Ra-226,	
	Cs-137 & Co-60 tubes and needles and Ir-192 wires. To decay	
1.Modern	processes of brachytherapy sources, calibration of brachytherapy	
Conventional	(mg Ra), Air Kerma Strength, Reference-Air-Kerma, Radium mass	
& advanced	equivalent (Ra mg Eq.), apparent Activity, milligram-hours,	
Radiotherapy Planning	integrated reference Air-kerma total reference-air-kerma, Exposure	
Techniques.	rate calibration.ICRU-38/58. Techniques of brachytherapy – 1.	
	Surface mould and interstitial implants.	
	8 Surface mould dosimetry system: construction and distribution	
	rules of circular, square, rectangular, sandwich, concave and	
	convex moulds. Use of surface moulds in the treatment of various	
	anatomical sites	
	Interstitial implant docimetry systems	
	Section C:-	
	1.Stockholm system: Source placement and dose prescription rules.	
	Type of applicators and their packing.	
	2. Paris system: Source placement and dose prescription roles. Type	
	of applicators and its packing.	
	3. Manchester system: Definition of points. A, B and MIR point P.	
	Manchester applicators, radium loading as per Manchester and	
	MIR criteria. Dose/dose-rate to points Z & B for different tandem	
	and ovoid loadings. Tolerance doses of rectum and bladder. ICRU-	
	38: Dose rate classifications, reference height, width & length.	
	Reference volume. Reference points of rectum and bladder	
	lymphatic trapezoid; pelvic wall points. Concept of 60 Gy.	

PAPER 1st	Topics	Hours.
Incory	Section C:-	
1.Modern Imaging and Conventional & advanced Radiotherapy Planning Techniques.	 Section C:- 4.Applicators of Ca Cx: Pre-loaded applicators (Stockholm, Paris etc.), Fletcher suit applicators. Henschke applicators, ring applicators, vaginal applicators. Different tools, catheters and other necessary items required for interstitial implant. Dose calculations for brachytherapy sources . 5.Exposure rate constant, exposure rate and effect of inverse square law, sievert integral to calculate Section D:- 1.Special techniques in Radiotherapy such as SRS, SRT, IMRT, IGRT and Tomotherapy Gamma Knife, construction, design and working principles. QA procedures and different clinical applications of gamma knife. Dose prescription criteria in the treatment of gamma knife. 2.X-knife, modification of LINAC, necessary accessories required for X-knife, energy choice of x-ray photons in X-knife, QA procedures and application and techniques in the treatment using circular cones and their planning. Cyber Knife: Principles and applications. 	
	3. Design and working of MLC and MMLC. QA procedures of MLC and MMLC. Conformal radiotherapy (CRT) and intensity modulated radiotherapy (IMRT). Use of MMLC in stereotactic radiotherapy and IMRT. Inverse planning system. Intra- operative Radiotherapy (IORT).	

PAPER 2nd Theory	Topics	Hours.
Theory	1.Radiation protection quantities and units:	
	Exposure, dose equivalent (H). Committed dose	
	equivalent (H_T) , effective dose equivalent (H_E) ,	
	Equivalent dose ((H _{TR}), effective dose (E).	
	Sources of radiation exposure: Natural sources and human	
	made sources.	
1. Radiation	Standards and regulations, philosophies of exposure limit, occupational limits, non-occupational limits	
Biology, Radiation Safety	2.Biological effects of radiation:	
and Information	Direct and indirect action of radiation, cell cycle effect,	
rechnology	somatic and genetic effects. Effects on tissues and	
	organs: Stochastic and non-stochastic (deterministic)	
•	effects, acute effects, late effects, effects of radiation on	
	Embryo & fetus: lethal effects, organ malformation,	
	growth impairment, mental retardation, cancer induction,	
	genetic effects, Late (delayed) effects: cataract formation,	
	organ function, cancer induction. Principles of basic	
	radiobiology. Acute and chronic radiation effects. Cell	
	survival curve. LET, RBE and OER. Time dose and	
	fractionation. The Cell, Effect of ionising radiation on	
	Cell, Chromosomal aberration and its application for the	
	biological dosimetry, Somatic effects and hereditary	
	effects, stochastic and deterministic effects, Acute	
	exposure and Chronic exposure, LD50/60.	
	3.Personal dosimetry devices: Film badges, TLD	
	badges, pocket ion chambers, electronic devices, Cr-39	
	foils, bubble, counting statistics, distributions, standard	
	deviation. Standard error, confidence internal.	

PAPER 2nd Theory	Topics	Hours.
1 11001 y	1	
	4 Basics of Radiation protection principles and	
	Prostico	
	Tractice.	
	Detection and measurement of Ionizing/radiation, Field	
	survey instrument, GM survey instruments, personnel	
1. Radiation	Monitoring devices film badge, TLD, pocket dosimeter,	
Biology, Radiation Safety	pulsed optically stimulated Luminescence dosimeter	
and Information	(POSL) etc. Radiation Protection Procedures for Patients	
Technology	and Personnel.	
•	5. Radiation Hazard evaluation and control	
	Philosophy of radiation protection, Effect of Time,	
	Distance and Shielding, Calculation of	
	workload, Calculation of Weekly dose to the radiation	
	worker and general public, good work	
	practices in diagnostic radiology and/or radiotherapy	
	practices (including teletherapy and	
	practices (mersuing teretierapy and	
	Brachytherapy), Planning consideration for radiology	
	and/or radiotherapy installation	
	Including work load, use factor & occupancy factors,	
	effect of different shielding material.	

PAPER 2nd	Topics	Hours.
Псогу	6.Regulatory requirements	
	National Regulatory Body, Responsibilities, organization,	
	Safety Standards, Codes and Guides, Responsibilities of	
	licensees, registrants and employers and Enforcement of	
	Regulatory requirements Advisory Groups & Regulatory	
	Agencies - ICRP, NCRP, UNSCEAR, AERB.	
	Safety and security of radiation sources, case histories of	
	emergency situations and preparedness, equipment and	
	tools including role of Gamma Zone Monitor, Regulatory	
	requirements and prevention of emergency, Preventive	
	maintenance and Safety Culture, Role of technicians in	
1. Radiation	handling radiation emergencies. Dose limits, ICRP	
Biology, Radiation Safety	recommendations ALARA principle.	
and Information	Protection of Personnel - Principles of personnel exposure	
Technology	reduction - Time, distance, shielding, protective barriers,	
	protective devices.	
•	Protection of the patient	
	Beam limitation, technique selection, general shielding,	
	grids, image receptors, projection, repeat radiography etc.	
	Radiation exposure and pregnancy - ALARA and	
	Pregnancy, the pregnant radiation worker, patient and	
	radiation exposure standards	
	Regulatory aspect of Radiation safety and personnel	
	monitoring	

Curriculum for Practical :- Second Year Diploma in Radiotherapy Technology (DRTT)

	Topics
Practical	
Tactical	